An anisotropic turbulent model for solar coronal heating
نویسنده
چکیده
Context. We present a self-consistent model of solar coronal heating in which we include the dynamical effect of the background magnetic field along a coronal structure by using exact results from wave MHD turbulence. Aims. We evaluate the heating rate and the microturbulent velocity for comparison with observations in the quiet corona, active regions and also coronal holes. Methods. The coronal structures are assumed to be in a turbulent state maintained by the slow erratic motion of the magnetic footpoints. A description of the large-scale and the unresolved small-scale dynamics are given separately. From the latter, we compute exactly (or numerically for coronal holes) turbulent viscosites used in the former to self-consistently close the system and derive the heating flux expression. Results. We show that the heating rate and the turbulent velocity compare favorably with coronal observations. Conclusions. Although the Alfvén wave turbulence regime is strongly anisotropic, and could reduce a priori the heating efficiency, it provides a unexpected satisfactory model of coronal heating for both magnetic loops and open magnetic field lines.
منابع مشابه
Self-consistent Coronal Heating and Solar Wind Acceleration from Anisotropic Magnetohydrodynamic Turbulence
We present a series of models for the plasma properties along open magnetic flux tubes rooted in solar coronal holes, streamers, and active regions. These models represent the first self-consistent solutions that combine: (1) chromospheric heating driven by an empirically guided acoustic wave spectrum, (2) coronal heating from Alfvén waves that have been partially reflected, then damped by anis...
متن کاملIon Temperatures in the Low Solar Corona: Polar Coronal Holes at Solar Minimum
In the present work we use a deep-exposure spectrum taken by the SUMER spectrometer in a polar coronal hole in 1996 to measure the ion temperatures of a large number of ions at many different heights above the limb between 0.03 and 0.17 solar radii. We find that the measured ion temperatures are almost always larger than the electron temperatures and exhibit a non-monotonic dependence on the ch...
متن کاملCoronal heating in coupled photosphere-chromosphere-coronal systems: turbulence and leakage
Context. Coronal loops act as resonant cavities for low-frequency fluctuations that are transmitted from the deeper layers of the solar atmosphere. These fluctuations are amplified in the corona and lead to the development of turbulence that in turn is able to dissipate the accumulated energy, thus heating the corona. However, trapping is not perfect, because some energy leaks down to the chrom...
متن کاملCoronal heating distribution due to low-frequency wave-driven turbulence
The heating of the lower solar corona is examined using numerical simulations and theoretical models of magnetohydrodynamic turbulence in open magnetic regions. A turbulent energy cascade to small length scales perpendicular to the mean magnetic field can be sustained by driving with low-frequency Alfvén waves reflected from mean density and magnetic field gradients. This mechanism deposits ene...
متن کاملTurbulence in the Sub-alfvénic Solar Wind Driven by Reflection of Low-frequency Alfvén Waves
We study the formation and evolution of a turbulent spectrum of Alfvén waves driven by reflection off the solar wind density gradients, starting from the coronal base up to 17 solar radii, well beyond the Alfvénic critical point. The background solar wind is assigned and 2D shell models are used to describe nonlinear interactions. We find that the turbulent spectra are influenced by the nature ...
متن کامل